On constructing matrices with prescribed singular values and diagonal elements
نویسندگان
چکیده
منابع مشابه
On Constructing Matrices with Prescribed Singular Values and Diagonal Elements
Similar to the well known Schur Horn theorem that characterizes the relationship between the diagonal entries and the eigenvalues of a Hermitian matrix the Sing Thompson theorem characterizes the relationship between the diagonal en tries and the singular values of an arbitrary matrix It is noted in this paper that based on the induction principle such a matrix can be constructed numerically by...
متن کاملMatrix Reconstruction with Prescribed Diagonal Elements, Eigenvalues, and Singular Values
DIAGONAL ELEMENTS, EIGENVALUES, AND SINGULAR VALUES DRAFT AS OF April 30, 2013 SHENG-JHIH WU AND MOODY T. CHU Abstract. Diagonal entries and eigenvalues of a Hermitian matrix, diagonal entries and singular values of a general matrix, and eigenvalues and singular values of a general matrix satisfy necessarily some majorization relationships which turn out also to be sufficient conditions. The in...
متن کاملNonnegative matrices with prescribed extremal singular values
We consider the problem of constructing nonnegative matrices with prescribed extremal singular values. In particular, given 2n−1 real numbers σ ( j) 1 and σ ( j) j , j = 1, . . . , n, we construct an n×n nonnegative bidiagonal matrix B and an n×n nonnegative semi-bordered diagonal matrix C , such that σ ( j) 1 and σ ( j) j are, respectively, the minimal and the maximal singular values of certai...
متن کاملOn singular values of partially prescribed matrices
In this paper we study singular values of a matrix whose one entry varies while all other entries are prescribed. In particular, we find the possible pth singular value of such a matrix, and we define explicitly the unknown entry such that the completed matrix has the minimal possible pth singular value. This in turn determines possible pth singular value of a matrix under rank one perturbation...
متن کاملConstructing all self-adjoint matrices with prescribed spectrum and diagonal
The Schur-Horn Theorem states that there exists a self-adjoint matrix with a given spectrum and diagonal if and only if the spectrum majorizes the diagonal. Though the original proof of this result was nonconstructive, several constructive proofs have subsequently been found. Most of these constructive proofs rely on Givens rotations, and none have been shown to be able to produce every example...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1999
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(98)10124-6